Using Indirect Encoding of Multiple Brains to Produce Multimodal Behavior

نویسندگان

  • Jacob Schrum
  • Joel Lehman
  • Sebastian Risi
چکیده

An important challenge in neuroevolution is to evolve complex neural networks with multiple modes of behavior. Indirect encodings can potentially answer this challenge. Yet in practice, indirect encodings do not yield effective multimodal controllers. Thus, this paper introduces novel multimodal extensions to HyperNEAT, a popular indirect encoding. A previous multimodal HyperNEAT approach called situational policy geometry assumes that multiple brains benefit from being embedded within an explicit geometric space. However, experiments here illustrate that this assumption unnecessarily constrains evolution, resulting in lower performance. Specifically, this paper introduces HyperNEAT extensions for evolving many brains without assuming geometric relationships between them. The resulting MultiBrain HyperNEAT can exploit human-specified task divisions to decide when each brain controls the agent, or can automatically discover when brains should be used, by means of preference neurons. A further extension called module mutation allows evolution to discover the number of brains, enabling multimodal behavior with even less expert knowledge. Experiments in several multimodal domains highlight that multi-brain approaches are more effective than HyperNEAT without multimodal extensions, and show that brains without a geometric relation to each other outperform situational policy geometry. The conclusion is that Multi-Brain HyperNEAT provides several promising techniques for evolving complex multimodal behavior.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy particle swarm optimization with nearest-better neighborhood for multimodal optimization

In the last decades, many efforts have been made to solve multimodal optimization problems using Particle Swarm Optimization (PSO). To produce good results, these PSO algorithms need to specify some niching parameters to define the local neighborhood. In this paper, our motivation is to propose the novel neighborhood structures that remove undesirable niching parameters without sacrificing perf...

متن کامل

Capacitated Multimodal Structure of a Green Supply Chain Network Considering Multiple Objectives

In this paper, a supply chain network design problem is explained which contains environmental concerns in arcs and nodes of network. It is assumed that there are some routes such as road, rail and etc. in each pair of nodes. In this model decision variables are choosing facilities to open, environmental investment level in each facility and flow of products between nodes in each route. A multi...

متن کامل

Multimodal Transportation p-hub Location Routing Problem with Simultaneous Pick-ups and Deliveries

Centralizing and using proper transportation facilities cut down costs and traffic. Hub facilities concentrate on flows to cause economic advantage of scale and multimodal transportation helps use the advantage of another transporter. A distinctive feature of this paper is proposing a new mathematical formulation for a three-stage p-hub location routing problem with simultaneous pick-ups and de...

متن کامل

The modified recombinant proinsulin: a simple and efficient route to produce insulin glargine in E. coli

Background: Recombinant insulin glargine, a long-acting analogue of insulin, is expressed as proinsulin in host cell and after purification and refolding steps cleaved to active insulin by enzymatic digestion using trypsin and carboxypeptidase B. Since the proinsulin's B and C chains have several internal arginine and lysine residues, a number of impurities are generated following treatment wit...

متن کامل

A Decision Support System for Urban Journey Planning in Multimodal Public Transit Network

The goal of this paper is to develop a Decision Support System (DSS) as a journey planner in complex and large multimodal urban network called Rahyar. Rahyar attempts to identify the most desirable itinerary among all feasible alternatives. The desirability of an itinerary is measured by a disutility function, which is defined as a weighted sum of some criteria. The weight...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1604.07806  شماره 

صفحات  -

تاریخ انتشار 2016